

GEOTECHNICAL INVESTIGATION REPORT

ELS SI 4473

Geotechnical Investigation for Proposed Five Story Health Office Building with roof top at Colombo Port

for

International Organization of Migration

June 24th, 2024

			Document No:		ELS/4473
0	24/06/2024	Geotechnical Investigation at Colombo Port	Eng. Nilanthi Ranathunga	Professor H.S. Thilakasiri	Eng. R. Mahinda Rathnasiri
Rev	Date	Description	Prepared By	Foundation Recommendation Given By	Approved By

Engineering & Laboratory Services (Pvt) Ltd

62/3 Neelammahara Road Katuwawala, Boralesgamuwa, Sri Lanka Tel: 011-4309494, 011- 2517365; Fax: 011-2509806 Email: els@elslanka.com Web site: www.elslanka.com

Table of Content

Chapter 01: Factual Report
1.0 Introduction
1.1 Site Description
1.2 Field Investigation
1.2.1 Borehole Investigation
1.2.2 Ground water Conditions
1.2.3 Subsurface Conditions 6
Chapter 2: Interpretation of the Results of the Site Investigations
1.0 Soil Properties7
1.1 Soil strength and compressibility parameters7
1.2 Condition of the bedrock9
2.0 Foundation Recommnedation
2.1 Shallow foundation10
2.1.1 Shear Failure of Soil under compressive forces10
2.1.2 Estimation of Settlement of Shallow Foundations
2.1.3 Allowable carrying capacities of individual and combined footings
2.2 Allowable carrying capacities of raft foundation
2.3 Deep foundation12
2.3.1 Skin friction
23.2 End bearing13
3.0 Summary of Recommendation

Tables and Figures

Chapter 1

Figure 1: Investigated Area	.2
Figure 3: Investigated area	.4
Table 1: Borehole details and drilling records at the site	5

Chapter 2

Table 1 - Thickness of the different layers at the borehole locations and the observed	08
Table 2 – Estimated strength parameters and compressibility properties of Layers	09
Table 3 - Rock classification system used	09
Table 4 – Quality of the bedrock	10
Table 5 – Allowable carrying capacities of different size footings at 1.0m depth	12
Table 6 – Estimated ultimate skin friction of soil and rock layers	13
Table 7 – Allowable end bearing capacity of the bedrock	.13

LIST OF ABBREVIATIONS

The following is the list of symbols used throughout the text.

ASTM	American Society for Testing and Materials			
вн	Bore Hole			
BS	British Standard			
c	Cohesion of Soil			
CR	Core Recovery			
Ε	Modulus of Elasticity			
EGL	Existing Ground Level			
GWT	Groundwater Table			
Ν	SPT blow count			
RQD	Rock Quality Designation			
SPT	Standard Penetration Test			
φ	Friction Angle			

Chapter 01: Factual Report Geotechnical Investigation for Proposed Five Story Health Office Building with Roof Top at Colombo Port

1.0 Introduction

A comprehensive geotechnical assessment has been conducted by **M/s. Engineering and Laboratory Services (Pvt) Ltd** for **International Organization of Migration** to determine the geotechnical conditions present within the investigated area.

Objectives of a soil investigation are;

- To evaluate geotechnical parameters of soil/rock at the proposed borehole locations.
- To assess the engineering parameters and to estimate bearing capacity of soil.
- To recommend suitable foundation system for the proposed construction.

This report includes the work carried out by Engineering and Laboratory Services (Pvt) Ltd in determining the sub soil conditions and ground water conditions along with laboratory investigation at the site, which is performed in arriving design parameters for the foundations from the recommended safe bearing of foundation soil.

The field geotechnical investigations consisted of conducting of two boreholes at the locations specified by the client. It is proposed to construct a five story heath office building with roof top (G+4+roof top) within the investigated area.

The field investigation was carried out according to BS5930:2015

1.1 Site Description

The investigation was carried out inside the premises of Colombo Port. Investigated premises can be accessed via port access road and multi-story buildings are located on the surrounding area. Right and rear boundaries of the investigated premises are bounded by a boundary wall, while the left boundary is secured by a fence. Investigation was carried out in a sunny weather condition and ground water level was encountered at around 0.5 m depth from the existing ground level during the investigated period. Two boreholes were advanced for the investigation and investigated area is shown in the Figure 1.

Figure 1: Investigated Area

Port Access road

Figure 2: Layout Map

Figure 3: Investigated area

1.2 Field Investigation

1.2.1 Borehole Investigation

The field investigation was consisted of advancing two boreholes at the locations shown in Figure 2. The field investigation was commenced on 05th May 2024 and completed on 08th May 2024. The summary of the borehole investigations are given in the table below.

The boreholes were advanced using a rotary - drilling machine. The drilling was carried out by means of overburden cutting tools and adopting the wash boring process to remove the cuttings from the bottom of the borehole. Representative, disturbed samples were taken at corresponding depths where the SPT was done, using a split barrel, 50 mm outer diameter sampler obtained by 63.5 kg hammer dropping through 760 mm distance. SPT was carried out at regular intervals in the overburden. This test was carried out as specified in BS 1377. Disturbed samples of soil were collected both from the SPT tube and the cuttings collected from the washings.

Double tube core barrels were used for drilling in hard rock and obtained rock cores were evaluated at the site considering the visual observations and parameters of core recovery (CR) and rock quality designation (RQD).

Table 1	1:	Borehole	details	and	drilling	records	at	the	site
					. 0				

Borehole No	GWL* (m)	Overburden Drilling (m)	Rock Drilling From Rock Level (m)	Total Depth (m)
BH-01	0.60	13.00	3.00	16.00
BH-02	0.50	8.50	3.00	11.50

*GWL: Ground Water Level

1.2.2 Ground water Conditions

Ground water measurements were obtained from the open borehole where the water level was obtained after a considerable response time. The ground water level obtained can fluctuate with the seasons, periods of precipitation and temperature.

1.2.3 Subsurface Conditions

The subsurface conditions encountered at the site are graphically presented in the borehole logs as shown in Annexure I. The soil horizons identified at the borehole locations shall infer from the samples taken from the borehole locations. Soil horizons/layers generally represent a transition from one soil type to another and that should not be assumed to be representing an exact plane of geological change. Further, the conditions may vary between and beyond the borehole locations.

The subsurface profile is plotted only according to the data obtained from the borehole locations and actual soil profile may vary from this profile.

Chapter 2: Interpretation of the Results of the Site Investigations

1.0 Soil Properties

1.1 Soil strength and compressibility parameters

The energy method of SPT correction (Bowles, 1996) was used to estimate the soil strength parameters of the soil layers. The energy method of SPT correction uses the following relationship to determine the N'_{70} from the field SPT blow counts (N_{Field}):

$$N_{70}' = N_{Field} C_N \eta_1 \eta_2 \eta_3 \eta_4$$

Where

$$C_N = \sqrt{\frac{95.76}{p'_o}}$$
$$\eta_1 = \frac{E_r}{70}$$

The estimated N'_{70} together with the particle size could be used to estimate the soil strength parameters at respective depths. The estimated soil strength parameters are drained (with drainage) parameters for sand and undrained (without drainage) parameters for clay.

From the results of the investigation, following main soil layers and subsoil layers may be identified. The thickness of these layers at the locations of the boreholes with the average SPT blow counts are given in Tables 1. Pl. note that sub-categories a, b, c, d, e and f are used for very soft, soft, firm, stiff, very stiff and hard cohesive soils and sub-categories a, b, c, d, and e are used for very loose, loose, medium dense, dense and very dense cohesion less soils.

Layer 1 -			SAND with gravel/Clayey SAND			
	Layer Layer	1c/1d 1d	-	Medium dense to dense Dense		
Layer	2 Layer Layer	- 2a 2c	Sandy C - -	LAY Soft Firm		

Layer	3 -	Sady CLAY
	Layer 3c/3d Layer 3d Layer 3e	 Firm to stiff Stiff Very stiff
Layer	4 -	Sady CLAY (Completely weathered rock)
	Layer 4d/4e	- stiff to very stiff

Thickness of the different layers at the borehole locations are given in Table 1.

	BH 1	BH 2			
Layer	Thickness (m)	SPT	Layer	Thickness (m)	SPT
Layer 1	1.00	-	Layer 1	1.00	-
Layer 2c	1.00	06	Layer 2a	4.50	00 - 01
Layer 2a	1.00	00	Layer 3d	3.00	12 - 17
Layer 1c/1d	3.00	34-46	Layer 4d	1.00	12
Layer 3c/3d	1.50	10			
Layer 3d	1.50	15			
Layer 3e	1.50	25			
Layer 3d	1.50	14			
Layer 4d/4e	1.00	20			

Table 1 - Thickness of the different layers at the borehole locations and the observed SPT

The compressibility properties of different soil layers were estimated based on the SPT blow counts and the estimated shear strength parameters. The estimated shear strength parameters and the compressibility properties are given in Table 2 were used in giving the recommendations. Laboratory consolidation tests were not done on undisturbed samples obtained from cohesive soil layers, and hence consolidation properties of those layers were assumed based on the past experience and SHANSEP procedure. The consolidation properties given in Table 2 were used in giving the recommendations.

Layer	φ′	c' (kPa)	c _u (kPa)	Cc	OCR	Elastic modulus,	Poisson's
				$1 + e_o$		E (kPa)	ratio, v
Layer 1	-						
Layer 1c/1d	35-36	3				24000-30000	0.27
Layer 2a			5 - 10			500	0.40
Layer 2c			35	0.25	5.8	2000	0.36
Layer 3c/3d			55	0.15	4.5	7000	0.34
Layer 3d			80-100	0.15	5.7-14.2	6000-12000	0.32-0.34
Layer 3e			130	0.15	8.8	17000	0.30
Layer 4d			65	0.075	5.3	8000	0.33
Layer 4d/4e			100	0.075	4.3	14000	0.32

Table 2 – Estimated strength parameters	and compressibility properties of Layers
---	--

Static ground water table is encountered 0.5m to 0.6 m depth at the time of investigation.

1.2 Condition of the bedrock

The rock cores obtained from the investigation are classified according to the classification system given in Table 3. The approximate rock mass rating (RMR) was also estimated using the borehole logs and the grade of rock together with the RMR was used to give recommendations regarding the carrying capacity of piles in the bedrock.

Grade	Description	Lithology
Grade I	Fresh rock	Clean rock
Grade II	Slightly weathered rock	Increased fractures
Grade III	Moderately weathered rock	Partly changed to soil; rock > soil
Grade IV	Highly weathered rock	Partly changed to soil; rock < soil
Grade V	Completely weathered rock	Some remnant rock structure;
		completely weathered to soil

ruble 5 rubbilleution by blein ubeu

Bedrock was found at 6.1m depth from the ground surface level at borehole locations BH 1. But, bedrock was cored at borehole location BH 1 only and the reported core recovery (CR), rock

quality designation (RQD) and the unconfined compression strength (UCS) of rock core are given in Table 4.

	BH-01													
Dept	h (m)	CR	RQD	Grade										
From	То	(%)	(%)	(N/mm ²)										
13.00	14.50	100	54	-	Grade II									
14.50	16.00	100	65	-	Grade II - I									
			BH 02	2										
8.50	10.00	80	37	-	Grade II									
10.00	11.50	100	76	-	Grade II - I									

Table 4 – Quality of the bedrock

2.0 Foundation Recommnedation

2.1 Shallow foundation

The proposed structure is a five-storey building with a roof top. The loads coming from the superstructure are not known at the time of writing this report. The allowable bearing capacities of the shallow foundations against compressive forces are estimated based on the shear failure and settlement considerations.

2.1.1 Shear Failure of Soil under compressive forces

The ultimate carrying capacity (q_{ult}) of shallow foundations on sand is estimated using the Hansen bearing capacity equation (Bowles, 1996) assuming general shear failure and vertical applied load.

2.1.2 Estimation of Settlement of Shallow Foundations

The immediate settlement of the subsurface due to the applied load was estimated using the method proposed by Schemertmann (1978) and the consolidation settlement is estimated using Terzaghi's 1D consolidation theory. The elastic modulus values were estimated using the commonly available empirical correlations with SPT N values. The allowable carrying capacities given in this report are estimated based on the following assumptions:

• The clear distance between any two adjacent footings is more than the width of the larger footing.

- No lateral forces and the moments are acting on the foundations, and the ground surface is horizontal upto a distance of at least 2 times foundation width from the edge of individual footings and combined footings, and 5m from the edge of all the raft foundations.
- Recommendations are given assuming that the ground surface is flat. If the ground surface is sloping, the recommended value should be modified according to the ground slope.
- Other slope stability concerns are addressed independently to this by checking the slopes and taking necessary measures.
- As any lab tests are not done on any undisturbed samples, compressibility and consolidation properties given in Table 2 are applicable to corresponding layers; and
- The subsurface profile within the site is represented by the reported borehole investigation results.

2.1.3 Allowable carrying capacities of individual and combined footings

Blackish sand (Probably mixed with peat) and very soft brownish gray sandy clay are present at the borehole locations to depths about 3.0m - 4.5m depths. The layers are completely replaced those layers as ground improvements by a suitable method using ABC/quarry dust. It should be ensured that all the areas with SPT blow counts zero is replaced. Table 5 below gives the allowable carrying capacity. It should be noted that if the building is constructed without ground improvement, it may be subjected to some settlements and therefore, it is not given.

The replacement process may be as given below or any other equivalent method suitable for site conditions may be adopted. Furthermore, dewatering, excavation of foundation pits and soil compaction near existing structures may cause settlement of such structures.

- i. Installation of the designed shoring system for the excavation upto the required level.
- ii. Removal of the soil upto the required depth at each of the footing location manually or using a backhoe.
- iii. Fill the excavation with quarry dust in layers not thicker than 500 mm without lowering the water table and Poker each layer in a 500mm square grid pattern so that further compaction is not possible. The quarry dust fill should be filled as mentioned above up to 1000mm below the bottom level of all the foundation locations.
- iv. De-water the partially filled excavations and compact the bottom of the excavation with a Wacker or a plate compactor fill the balance 1000mm below each foundation with ABC/Quarry dust as given below.

v. Fill the balanced excavation in layers not exceeding 300mm thickness compacted to achieve 95% degree of compaction upto the foundation level.

Appropriate quality control procedures should be followed to ensure the quality of the replacement process. The recommended allowable carrying capacities of different size footings without ground improvement and with ground improvement (as outlined in section 2.1.3) as mentioned above or equivalent methods are estimated for an allowable settlement of 25-50mm are given in Table 3 subjected to the assumptions given in section 2.1.2. Further, it should be noted that the secondary consolidation of the un-compacted (or improperly compacted) fill was not considered in Table 5.

Footing	Minimum	Allowable carrying capacity (kPa) with ground
	depth (m)	improvement using replacement
1m x 1m	1.0	175 - 200
2m x 2m	1.0	125
3m x 3m	1.0	100
1m strip foundation	1.0	125 - 150
2m strip foundation	1.0	80

Table 5 – Allowable carrying capacities of different size footings at 1.0m depth

2.2 Allowable carrying capacities of raft foundation

Allowable carrying capacity of a raft foundation placed at 1m depth below the existing ground surface level with ground improvement as described in section 2.1.3 is recommended as 90 kPa for allowable settlement of 75mm subjected to the applicable assumptions to raft foundations mentioned in section 2.1.2.

2.3 Deep foundation

Rock socketed bored and cast in-situ piles may also be used to support the proposed structure. The ultimate skin friction and the allowable end bearing capacities of the soil layers are given below.

2.3.1 Skin friction

The estimated ultimate skin friction of the soil and rock layers are given in Table 6. Layer thicknesses at the borehole locations shall be taken from Table 1.

Layer	Ultimate skin friction (kPa)	Possibility of generation of negative skin friction (NSF)*
Layer 1	10	Yes
Layer 1c/1d	50	No
Layer 2a	10	Yes
Layer 2c	25	Yes
Layer 3c/3d	35	No
Layer 3d	40	No
Layer 3e	65	No
Layer 4d	30	No
Layer 4d/4e	55	No
Grade II	200	No
Grade II - I	250	No

Table 6 – Estimated ultimate skin friction of soil and rock layers

* The NSF shall be considered due to the possible primary and secondary consolidation of the organic or very loose sand and the soft cohesive soil layers. Table 5 states the NSF of individual layers and if there are lay Layers above a certain layer that are subjected to NSF, then the layers above it will be subjected to NSF.

23.2 End bearing

The top level of the bedrock is in a completely to fresh state at the borehole locations BH 01 and BH 02. Bedrock is found at the locations of BH 01 and BH 02 at depths of 13m and 8.5m respectively. Therefore, allowable end bearing capacity of a pile socketed 1.0m or one of the pile diameter, whichever is higher, into the bedrock shall be recommended as given in Table 7.

Grade* of the bedrock	Allowable end bearing capacity (Kpa)
Grade II	5000
Grade II - I	6000

Table 7 – Allowable end bearing capacity of the bedrock

* Grade of the bedrock shall be determined from Table 4

3.0 Summary of Recommendation

Only a summary of the recommendations are given in this section and the readers are recommended to go through the entire report.

- As any lab tests are not done on any undisturbed samples, the soil strength parameters given in Table 2, based on the experience of the undersigned, shall be recommended for the soil layers at different depths for the layers identified in Table 1.
- The allowable capacities of the individual and combined footings are recommended as given in Table 5 subjected to the conditions mentioned in section 2.1.2.
- Allowable carrying capacity of a raft foundation placed at 1m depth below the existing ground surface level without ground improvement is recommended as 90 kPa for allowable settlement of 75 mm subjected to the applicable assumptions to raft foundations mentioned in section 2.1.2.
- The recommendations regarding the deep foundations are given in section 2.3.
- It is highlighted here that the effect of the construction methods or loading of the foundations on the adjacent structures should be given due consideration.

Foundation recommendation given by

Prof. H. S. Thilakasiri,PhD, C. Eng., FIE(SL)Geotechnical Engineering Consultant

ANNEXURE I: SOIL PROFILE

ANNEXURE II: BOREHOLE LOGS

E	5		EN	GINE GE	CERI OTE	NG & CHN	& LABORATO	DRY SH FIGAT	ERVIC	ES (DIV	PV' ISI(T) I ON	LTD	NC K	0 62/3, Nee Latuwawala 0114	lammahar , Sri Lank 309 494	a Road, a. Tel:		Form ELS-	at No -SI-02	•
Proje	ct			Geoto Build	echni ling a	cal Ir it Col	vestigation for t ombo Port	he Prop	posed P	ort I	Ieal	th (Office	•	Borehole	e No		I	3H- 01		
Clien	t			Interna	tional	Organi	zation of Migration								Sheet		1	1	of		2
Locat	ion			Colom	bo Por	t	Rig	4005-002	21 Core	Dian	neter	(mm	ı)	54.00	Ground	Water Ta	ble (m)			0.60	
Date	of Sta	arteo	<u>1</u>	05/05/2	2024		Drilling Method	Rotary	Casi	ng de	oth(n	n)			Coordinates						
Date	or fu	nisne	ea	06/05/2	2024		Casing Diameter	7011111									SPT resistance-Blows/final 30cm				
epth (m	a. No.	a.Type	educed vel	epth (m	egend		Soil Descri	ption		ŀ	ield (S	Reco SPT)	ords	Rock C	Rock Coring Parameters			SPT			
<u>р</u> 0.00	Ň	Ň	R 9	Q	Г		Ground le		15cm	15cm	15cm	Z	Cr (%)	(%)	F1 No/m						
-	1	DS	G.W.T at 0.60m			Blac	kish gray fine SA	ND with	h gravel												
2.00	2	ss ws	0.0011	1.00		Firn	n reddish brown f lateritic sandy	ine to m CLAY	nedium	3	3	3	6				^ 6	5			
3.00	3	ss ws		2.00	1222	v	ery soft brownish CLAY	ı gray sa	indy	1	0	0	0				0				
4.00 5.00 6.00	4	ss ws ss ws		3.00	T T T T T T T T T	D	Dense yellowish b medium clayey	rown fir y SAND	ne to	3	21	25	46 34							46	5
- 7.00 - 8.00 - 9.00	7	ss ws ss ws		6.00		Stiff	whitish/yellowish medium sandy	ı brown CLAY	fine to	3	4	6	10					10	5		
10.00	8	ss ws		9.00		Ver f	y stiff whitish/yel ine to medium sa	lowish l ndy CLA	brown AY	5	10	15	25						A 25		
SPT	Whe	re fu	ull 0.3m	ber of	ey D - Distr	ırbed	Sam	ole				Rema	rks		Logged	<u>By :</u>					
	blow	lows for the quoted penetration is given (not N-value)							SS -SPT	Samp	le								Nilar	ıthi	
GWL NF	: Ground Water Level observed inside the Borehole, after the :Not Encountered							ne	W - Wat	er Sar h Sam	nple					Existing	ground		Supervis	ed By:	
HB	:Han	immer Bounce							UD- Und	isturb	ed Sa	ample	•			sidered		Sara	th		
FD :	Free	Dow	vn			CS- Core	Samp	ole	(0)			as the zero level			Drilled By:						
									Cr - Core	Reco	very	(%) Desi	onatio	n (%)			Hemantha				
XXX	Ma	Made Ground X X X Silt 0000 Gravel								eritic	Node			Comul	tely Weeth	ered Doct					
<u>x x x</u>		.AY	iounu	Lx* x × x	· sand	1	Organic Mat	tter	Iat	y sand	noau 1	ues [-		Tighly Wea	thered Roc	ered Rock k	ŕ	Free	ם sh Roc	k	

E	5		EN	GINE GE(ERI DTE	NG & CHNI	z LAI ICAL	BORA 2 INVI	TOR ESTI	RY SE GAT	ERVIC	ES (DIV	(PV ISI	T) I ON	LTD	• NO	0 62/3, Nee Xatuwawala 0114	lammahar , Sri Lanka 309 494	a Road, a. Tel:	l, Format No: ELS-SI-02			
Proje	ct			Geoto Build	echni ling a	ical Inv it Colo	vestig mbo l	ation f Port	or the	e Prop	oosed P	ort I	Heal	lth (Office	e	Borehole	e No		В	H- 01		
Clien	t			Interna	tional	Organiza	ation of	Migratio	on								Sheet	Sheet			of	2	2
Locat	tion		1	Colom	bo Por	t I	Rig	- M-41	4	005-002	Casing denth(m) 54.00						Ground Water Table (r					0.60	
Date Date	01 Sta of Fir	arteo	a od	05/05/2	2024		Drilling Casing	g Metho Diamete	a k er 7	Kotary 6mm	Eleve	levation (m)					Coordina	ites		⊢			
Date		liisii	l	00/03/2	2024		cusing	Diamet	,	omm							SPT			sistance	-Blows/	final 30	cm in
depth (m	a. No.	a.Type	teduced	Jepth (m	egend		S	Soil De	script	ion	(SPT) Rock Co						oring Parameters			A	SPT	_	
ц 10.00	So I	S	4 9 4 9	I	I			Grou	nd leve	1		15cm	15cm	15cm	Z	(%)	(%)	No/m					
							Same as previous													-/			
	9	SS		10.50								3	6	8	14							++	+
11.00																				4 1	1		
					[*••	Stiff v	tiff whitish/yellowish brown f																
L		ws					medium sandy CLAY																
					1+11																		
12.00																							
	10	ss		12.00		Very s	tiff wh	nitish / y	ellowi	sh brov	wn fine	4	7	13	20								
L		ws					sand	ly CLA											20				
					$\sum_{i=1}^{n}$	COMI	COMPLETELY WEATHERED																
13.00	11	SS					Base	ement l	Rock 1	Level		HB			>50								$\overline{\mathbf{X}}$
				13.00	\sim																		50 7
					\sim																		
	1st	CS			\sim	Bla	ackish	gray fi	resh m	nodera	tely					100	54						
14.00					\sim	f	fractu	red Bio	otite G	NEIS:	S					100	54						
					\sim																		
					\sim																		
				14.50	\sim																		
15.00					\sim																		
-					\sim	Bla	ackish	gray fi	resh m	nodera	tely	1											
	2nd	CS			\sim	f	fractu	red Bio	otite G	NEIS	s					100	65						
-					\sim																		
16.00					\sim																		
					01.00																		
				16.00		End o	of the l	borehol	e at 16	5.00 m	depth												
F																							
17.00																							
-/.00																							
F																							
18.00																							
10.00													1	1									
1					1									1									
┠					1									1									
10.00				1									1	1									
- 9.00				1									1	1									
												ł –											
F																							
20.00					1									1									
20.00	1	1	I	I	I			Sample	e Key / '	Test Ke	ey		1	1				Rema	rks		Logged	By:	
SPT	Whe	re fu	ıll 0.3m	n penetra	tion h	as not be	en achi	ieved the	numbe	er of	D - Distu	irbed	Samj	ple					_		Niler		
GWI	blow	s for	the qu	the quoted penetration is given (not N-value) Water Level observed inside the Borehole, after the							SS -SPT W - Wat	Sampl er Sar	le nple						_		Supervis	ed Bur	
NE	:Not	Enc	ncountered								WS-Was	h Sam	ple					Existing	ground	-	aper vis	<u>са Бу:</u>	_
HB	:Han	nmer	r Bounce								UD- Und	isturb	ed Sa	ample	e			level con as the zer	sidered o level		Sara	ul	
FD	:Free	Dov	Jown								CS- Core	Samp	verv	(%)					-	Drilled By:			
										RQD-Ro	ck Qu	ality	Desi	gnatio	on (%)				Hemantha				
888	Ma	Made Ground $\begin{bmatrix} x & x & x \\ x & x & x \end{bmatrix}$ Silt $\swarrow \circ \circ \circ \circ$ Gravel										eritic	Nodu	iles	- <u>\</u> -1	Compl	etely Weathered Rock						
	CI	AY		ا المنتخب Silt المنتخب Gravel								v sano	d.	E		Highly We	eathered Ro	ck	L	Fres	h Roc	k	

E	5		EN	GINE GE(ERI OTE	NG a CHN	& LABORATO NICAL INVEST	DRY SH FIGAT	ERVI TIONS	CES (5 DIV	(PV ISI	T)] ON	LTD	NO K	0 62/3, Nee Xatuwawala 0114	lammahar , Sri Lank 309 494	a Road, a. Tel:	,	Forr ELS	nat N S-SI-(o:)2
Proje	et			Geoto Build	echni ling a	ical Ir at Col	nvestigation for t lombo Port	he Prop	posed	Port l	Heal	lth (Office))	Borehol	e No		J	BH- 0	2	
Clien	t			Interna	tional	Organi	zation of Migration	-	~						Sheet		1	of		2	
Locat	ion		1	Colom	bo Por	t	Rig	4005-002	021 Core Diameter (mm) 54.00						Ground Water Table			<u>'</u>		0.50	
Date (of Fir	arteo	u ed	07/05/2	2024		Casing Diameter	76mm	El	Elevation (m)					Coordinates			-			
				(2024	1												esistanc	e-Blow	s/final	30cm in
epth (m	a. No.	a.Type	educed vel	epth (m	egend		Soil Descri	ption			field (§	Reco SPT)	ords	Rock C	oring Para	ameters		A	SPT		
<u>Ω</u> 0.00	Ñ	Ñ	R 9		L		Ground le	evel		15cm	15cm	15cm	z	(%)	(%)	F1 No/m	-				
-	1	DS	G.W.T at 0.50			Blac	kish gray fine SA	h grav	el												
_ 2.00	2	SS WS SS	m	1.00		Verv	soft brownish gra	av sandy	v CLA	1 Y	0 FD	1	1				▲ 1				
<u> </u>	4	ws ss									FD		0				• 0				
4.00 5.00	5	ws ss ws		3.20		St	iff yellowish brov CLAY	vn fine s	sandy	3	5	7	12					• 12			
- 7.00	6	ss ws		6.00		V	ery stiff yellowish sandy CLA	ı brown AY	fine	3	8	9	17						17		
<u>8</u> .00	7	ss ws		7.50	52222	Sti (iff yellowish brow CLAY with Completely Weath Basement Roc	n fine s mica hered Ro k Level	andy ock	2 HB	6	6	12 >50					▲ 12			50
9.00 - 10.00	1st	CS		0.50	22222	Blac	kish gray modera moderately fractu GNEISS	tely wea red Biot S	atherec	1				80	37						
SDT	W/1	-	11.0.2		ion 1	y / Test K	ey ID D	etrue - J	Same					Rema	arks		Logge	:d By :			
SPT	Whe	re fu	ill 0.3m	penetrat	ion ha	ber of	D - Di	isturbed T Samp	Samj le	ple							Nil	anthi			
GWL	: Gr	's foi ounc	the quo Water	quoted penetration is given (not N-value) ter Level observed inside the Borehole, after the						/ater Samp	nple						ŀ		Superv	ised By	/:
NE	:Not	Enc	ountered	ared						ash San	ple					Existing	ground		Sa	rath	
HB	:Han	nmer	r Bounce	nce						ndisturb	ed Sa	ampl	e			as the ze	sidered ro level		5d	aul	
FD :	Free	Dov	vn							ore Reco	verv	(%)			as the zero level			Drilled By:			
										Rock Ou	ality	Des	, ignatio	n (%)				Hemantha			
XXX	Me	de C	round X X X Silt 000 Gravel						AAAA												
<u>xxx</u>		AY	nound	<u> x[×]x[×]x</u>	sand	1	Organic Mat	tter		iateritic Silty san	nodu d	nes [- F	ati Adi	Comple Highly Wes	athered Roc	iered Rock k	· K	Fre] sh Ro	ck	

E	5		EN	GINE GE	ERI DTE	NG (CHN	& LAI NICAI	BOR 2 INV	ATO /EST	RY SI TIGAT	ERV TION	VICE NS D	ES (1 DIV1	PV' ISI(T) I ON	LTD	• •	O 62/3, Neo Katuwawala 0114	elammahaı a, Sri Lank 4 309 494	a Road, a. Tel:		Form ELS-	at No -SI-02): 2	
Proje	et			Geot Build	echni ling a	cal Iı ıt Col	nvestig lombo	ation Port	for tl	ne Prop	posed	d Po	ort E	Ieal	th C	Office	e	Borehol	e No		В	H- 02			
Client	ţ			Interna	tional	Organi	ization of	f Migrat	tion									Sheet		2	2	of		2	
Locat	ion			Colom	bo Por	t	Rig	Ma	,	4005-002	21	Core I	Diam	eter	(mm)	54.00	Ground	Water Ta	ble (m)			0.50		
Date of Date o	ol Sta of Fir	arteo	1 vd	07/05/.	2024		Drilling	g Meth Diame	0a ter	Rotary 76mm		Casing Elevat	g aep tion (n)	1)			Coordin	ates		-				
Date	л ги Т	IISIIG	u	08/03/	2024		Cusing	Diame		7011111	-	Lieva		m)					[SPT re	sistance	-Blows/	final 3(0cm in	
)epth (m	a. No.	a.Type	teduced svel)epth (m	egend		5	Soil D	escrij	ption			Fi	ield H (Sl	Recoi PT)	ds:	Rock	Coring Par	ameters		<u> </u>	SPT			
ц 10.00	S	S	R N		I			Gro	und le	vel			15cm	15cm	15cm	N	(%)	(%)	No/m						
	2nd	CS		10.00	XXXXXXX	В	lackish fractu	gray red Bi	fresh iotite	modera GNEIS	ately S						100	76							
12.00 - 13.00				11.50		Er	nd of th	ne bor de	ehole epth	e at 11.	50 m	1													
<u>1</u> 5.00																									
<u>1</u> 6.00																									
<u>1</u> 7.00																									
<u>1</u> 8.00																									
-																									
20.00																									
OD T	117		11.0.5	Sample Key / Te								Dist	ih - 1 -		la				Rem	arks		Logged	<u>By :</u>		
SPT	When	re fu	full 0.3m penetration has not been achieved the number of for the guardad penetration is given (not N value)							ber of	D - I SS - 9	Distur	bed S	Samp e	ole							Nilar	nthi		
GWL	blow	lows for the quoted penetration is given (not N-value) Ground Water Level observed inside the Borehole, after the							ne	55 -5 W -	Water	anpl r Sar	e 1ple						-	5	Supervis	ed By:			
NE	:Not	Encountered								WS-	Wash	Sam	ple					Existing	ground			<u>,</u>			
HB	:Han	nmer	Boun	Bounce							UD-	Undis	sturbe	ed Sa	mple				level con as the ze	sidered ro level		Sara	un LE		
FD :	Free	Dow	'n								CS- Core Sample								as the Ze	_	Drilled By:				
											ROD-Rock Quality Designation (%)										Hemantha				
XXX	Mode Ground X, X, X Silt 0.000 Ground									AAA lateritic Nodulos (2)-(Completel							1-4-1 337	v Woothered D1-							
<u>×××</u>		Iade Ground X × × × X Silt 요승하 Gravel LAY 도소화 Organic Matter								er	Δ <u>Λ</u> Δ × ×	Silty	ritic I sand	Nodu I	ies 🗠	<u></u>	Comj Highly W	veathered R	nered Roc	Fres	h Roc	k			

ANNEXURE III: UCS TEST RESULTS